Portal Vein Embolization: Techniques

David C. Madoff, M.D.
Professor of Radiology
Vice Chairman for Academic Affairs
@dcmadoff
David Madoff, M.D.

- No relevant financial relationship reported
Portal Vein Embolization (PVE)

Redirects portal blood flow to FLR:
- Initiates **HYPERTROPHY** of non-embolized segments
- ↓ perioperative complications
- ↑ potential surgical candidates with **MARGINAL** anticipated FLR volumes
- Achieve similar survival rates to surgical patients not requiring PVE

Makuuchi, *Surgery* 1990
de Baere, *Radiology* 1993
Madoff, *J Vasc Interv Radiol* 2005
May, *J Vasc Interv Radiol* 2013
Various Techniques Described for PVE

- Transiliocolic
- Transhepatic contralateral
- Transhepatic ipsilateral
- Transjugular
- Transarterial
- Transsplenic
- Transsinusoidal
- Reversible
- Combination approaches – TAE/PVE; PVE/HVE; PVE + stem cells

May, J Vasc Interv Radiol 2013
Transiliocolic Approach

Original PVE description

Laparotomy w/pararectus skin incision to RLQ (~10 cm in length)

Terminal portion of ileum extracted from incision

One branch of ileocolic vein

6F sheath fixed in place →
5.2F catheter inserted into main PV

Pre-PVE

Post-PVE
Transhepatic Contralateral Approach

1st Percutaneous Approach
Access via Remnant Liver

Advantage
Direct access to right PV branches

Disadvantages
Potential FLR injury
LPV thrombosis
Segment 4 catheterization may be difficult

RPVE with n-butyl cyanoacrylate

de Baere, *Radiology* 1993
Transhepatic Contralateral Approach

Arterial pseudoaneurysm
Pancreatic duodenectomy *without right hepatectomy 2 months after PVE*

Courtesy of Dr. Y. Kodama, Sapporo, Japan
Transhepatic Ipsilateral Approach

Access via Diseased Liver

Advantages:
Avoids FLR injury
Segment 4 easily accessible

Disadvantages:
May need to complete procedure through previously occluded PVs
Difficult access with large tumors??

Right PVE with Particles & Coils

Nagino, *Radiology* 1996
Madoff, *Radiology* 2003
Transhepatic Ipsilateral Approach

Subcapsular hematoma – evacuated at time of successful resection

Madoff, Radiology 2003
Transhepatic Ipsilateral Approach

Arterial pseudoaneurysm

Extended right hepatectomy performed 27 days after PVE

Courtesy of Dr. Y. Kodama, Sapporo, Japan
Ipsilateral vs. Contralateral Approach

Ipsilateral Now Favored

- Most prudent to _avoid access-related complications within FLR_

- Especially beneficial if segment 4 is embolized
 - With experience, acute angles encountered are easily navigated with reverse curve catheters & considered of little importance & consequence

- If tumor burden precludes safe access route to RPV branches or if fast polymerizing liquid embolics (e.g., NBCA) utilized, then contralateral approach is reasonable alternative
Transjugular Approach

RPVE with n-butyl cyanoacrylate

Perarnau, *Hepatogastroenterology* 2003
Courtesy of James Caridi, M.D., New Orleans, LA
Transarterial Approach

Hepatic sinusoidal anatomy

Arteries to left & middle hepatic lobes infused w/ ethiodol:ethanol (3:1) until 3rd/4th order PVs seen

Madoff, J Vasc Interv Radiol 2007
Transarterial Approach

Massive Hypertrophy of right & right middle lobes

Madoff, J Vasc Interv Radiol 2007
Transarterial Approach

13cm solitary right HCC w/HCV cirrhosis

“Technically resectable” but FLR 27%

↓

Selective cTACE
100mg Cisplatin
50mg Doxorubicin
10mg Mitomycin C
10 ml ethiodized oil
Transarterial Approach

One month after cTACE → RPVE performed

Right posterior sector portal vein occluded pre-PVE
Transarterial Approach

Can transarterial therapy alone can lead to sufficient hypertrophy making PVE unnecessary?
Transarterial Approach

Planned Sequential Transarterial Embolization & PVE

Contrast-enhanced CT before TAE

72-year-old man with HCC (9 cm) with non-alcoholic steatohepatitis (NASH)

FLR/TELV = 37%
Transarterial Approach

Planned Sequential Transarterial Embolization & PVE

Pre-embolization

Post-embolization

Bland embolization with 100 µm microspheres
1 month later, mass largely necrotic – significant hypertrophy seen
FLR/TELV = 51%
Transarterial Approach

Planned Sequential Transarterial Embolization & PVE

72-year-old man with HCC (9 cm) with non-alcoholic steatohepatitis (NASH)

Pre-TAE

1 month post-TAE

\downarrow

Substantial hypertrophy – DH: 14%

NO PVE \rightarrow Uneventful Right Hepatectomy
Transarterial Approach
Arterial Embolization to Increase Resection – *Prospective*

- 13 patients underwent preoperative arterial embolization of right liver
- 4 – 15 coils
- CT volumetric assessment
 - Right liver → 2-33% ↓ (m, 10%)
 - Left liver → 11-68% ↑(m, 37%)
- 9 patients had extended right hepatectomy 27-75d (m, 44d)
- No major complications

Right arterial coil embolization
↓
Left liver hypertrophy allows for extended right hepatectomy in initially unresectable hilar cholangiocarcinoma

Vogl, *Radiology* 1998
Transarterial Approach
Arterial Embolization vs. PVE – *Prospective Randomized*

- 50 patients with hilar cholangiocarcinoma from 2003 – 2006
- Planned extended right hepatectomy
 - R-TAE with PVA particles & coils ($n=25$)
 - R-PVE with PVA particles ($n=25$)
 - CT volumetry performed before & approximately 3 weeks later
- Results
 - R-TAE – FLR \uparrow 40 mL ($P < .01$)
 - R-PVE – FLR \uparrow 110 mL ($P < .01$)
 - *FLR growth after PVE significantly greater than after TAE* ($P = .004$)
 - Minor complications: R-TAE: liver abscess ($n=2$); R-PVE: subcapsular seroma ($n=1$)

Compared with TAE, PVE was significantly superior regarding FLR hypertrophy
Transsplenic Approach

Gastroesophageal variceal bleeding & HCC in a 47-year-old man

Not used in routine clinical practice

↑↑ vascularity of spleen → ↑ risk of bleeding
Transsplenic Approach

Gastroesophageal variceal bleeding & HCC in a 47-year-old man

11 patients – RPVE (n=10); LPVE (n=1)
After PVE, transsplenic access embolized w/coils & nBCA
No procedure-related complications except abdominal pain during or after PVE

Zhu, J Vasc Interv Radiol 2013
Han, Korean Congress of Radiology Abstract Book 2015
Transsinusoidal Approach

Feasibility in 8 swine
Indirect portography – cranial mesenteric art.
Embolic – ethylene vinyl alcohol copolymer
Low viscosity – deep penetration

Injected via microcatheter wedged in HV & advanced through sinusoids into PVs

Successful in 5/8 (63%)
No periprocedural adverse events
Hypertrophy not assessed

Smits, *Cardiovasc Intervent Radiol* 2012
“Reversible” Approach

Pre-clinical study – 9 monkeys
PVE with Curaspon powder – distal venous obstruction?
Liver segment volumes determined by CT: Pre-, 1-mo & 1-yr after PVE
Significant hepatocyte proliferation & hypertrophy in non-embolized liver
Hypertrophy not transient

“Reversible” PVE efficiently induces liver regeneration & avoids long-term liver scarring caused by more permanent embolics

Lainas, J Hepatol 2008
Combination Approaches
Sequential Transarterial Embolization & PVE

56-year-old man with HCV, HCC (12cm) & cirrhosis
FLR/TELV = 30%

Arterial Phase

Portal Phase

May, J Vasc Interv Radiol 2013
Combination Approaches
Sequential Transarterial Embolization & PVE

Bland embolization with 40 µm microspheres

Pre-embolization

Post-embolization
Combination Approaches
Sequential Transarterial Embolization & PVE

1 month later, ipsilateral RPVE with microspheres & coils
Combination Approaches
Sequential Transarterial Embolization & PVE

Segments 1/2/3/4 = 30%

Segments 1/2/3/4 = 54%

$DH = 24\%$

Patient underwent successful right hepatectomy
Combination Approaches
Sequential Transarterial Embolization & PVE

% FLR Volume

Pre-Embolization Post-Embolization

TACE + PVE n=18
PVE n=18

P = .013

PVE 3 weeks after TACE
83% complete pathological response

Improved 5-yr DFS
19% vs. 31%
P = .041

Ogata, Br J Surg 2006
Combination Approaches
Sequential Transarterial Embolization & PVE

1997 – 2008, 135 patients with HCC
Sequential TACE and PVE (n = 71) vs. PVE alone (n = 64)

Baseline patient & tumor characteristics similar in both groups

PVE performed mean 1.2 months after TACE

CT liver volumetry performed before & 2 weeks after PVE
Mean \(\uparrow \) in \% FLR volume higher in
TACE & PVE group (7.3\%) than **PVE-only group (5.8\%)** \((p = 0.035)\)
Combination Approaches
Sequential Transarterial Embolization & PVE

Overall ($p = 0.028$) & disease-free ($p = 0.001$) survival rates significantly higher in TACE & PVE group than in PVE-only group

Yoo, Ann Surg Oncol 2011
Combination Approaches
Sequential PVE & Hepatic Vein Embolization (HVE)

PVE does not always induce sufficient liver regeneration

HVE – 12 pts after PVE
RHV embolized with coils after insertion of IVC filter or vascular plugs

LFTs w/o significant change
Cirrhotic livers w/↓ regeneration rates following HVE after PVE
Wrong HV trunk in 1 patient

Conclusion
Sequential PVE & HVE safe & effective for contralateral hypertrophy than PVE alone

FLR/TLV
35% ± 2% before PVE
40% ± 1% 1 to 2 wks after PVE
44% ± 1% 2 wks after HVE
66% ± 6% 1 wk after hepatectomy

Combination Approaches
Liver Venous Deprivation (LVD) Technique

Single session PVE & HVE for liver regeneration before hepatectomy

7 pts: Liver Metastases (n=2), HCC (n=1), ICC (n=3) & Klatskin Tumor (n=1)

RESULTS
Mean of 3 days transaminases ↑

Mean 23d after LVD
FLR ↑: 28% → 41%

During 1st 7d, venous-deprived liver volume ↑ (+13.4 %) whereas it strongly ↓ (-21.3 %) at 3 – 4 wks

HISTOLOGY
Sinusoidal dilatation, hepatocyte necrosis & atrophy in all patients

Technical success 100 % & no complications before surgery

Resection performed in 6/7 pts

Conclusions
LVD feasible, well tolerated & provides fast FLR hypertrophy &

LVD needs to be further evaluated & compared to PVE

Combination Approaches
PVE with Addition of Stem Cells

- Bone Marrow Stem Cells (BMSCs) are source of hepatic stem cells
- BMSCs participate & accelerate hepatic regeneration
- Portal BMSCs administration + PVE vs. PVE alone
 Amount of hypertrophy: 77% vs. 39% (P=.039)

Retrospective study of extended right hepatectomy
 - 40 patients – median 28 month followup
 - No PVE = 18; PVE = 11; PVE + SC = 11
 - PVE + SCs (138.66 ml ± 66.29)
 - PVE alone (62.95 ml ± 40.03)
 - ↓ major complications, ↑ FLR, ↑ overall survival

Fürst, Radiology 2007
Esch, Ann Surg 2012
Conclusion

- PVE is an important tool in the liver cancer treatment paradigm
 - Hypertrophy FLR before hepatic resection

- Many different techniques used over the years
 - Transiliocolic – original description
 - Most common percutaneous approaches – ipsilateral & contralateral

- Newer techniques & strategies being developed
 - Combination therapy
 - Transarterial
 - Transsplanic
 - Transsinusoidal
 - “Reversible”