Traumatic Aortic Transection: Who, How and When?

V TACHER, P. DESGRANGES, H. KOBEITER
Services d’Imagerie Médicale et de Chirurgie Vasculaire
CHU Henri Mondor, Créteil, FRANCE
Vania Tacher, M.D.

• NO DISCLOSURES
Blunt Aortic Injury: Background

- The second most common cause of death in trauma patients
- 80 - 85% patients die before being at hospital
- 50% patients die within 24 hours
- High mortality rate related to significant severe associated injuries

Blunt Aortic Injury: mechanism

- Injury to the aorta from sudden deceleration
 - Motor vehicle collision
 - Fall from significant height
Blunt Aortic Injury: locations

- Ascending aorta: 1%
- Aortic arch: 7%
- Aortic isthmus: 70%
- Descending aorta: 9%
- Abdominal aorta: 12%

Starnes B. W. et al. JVS 2010
Blunt Aortic Injury: grade
Blunt Aortic Injury: classification

- Aortic transection of thoracic aorta:
 - Acute: delay to trauma ≤ 14 days
 - Chronic: delay to trauma > 14 days

Tako et al. classification
Blunt Aortic Injury: treatment options

- Non operative
- Conventional surgery
- Endovascular procedure
Blunt Aortic Injury: Operative Techniques

- Conventional surgery:
 - Technique « clamp and sew »
 - Technique using ECC
 - Technique using a left-left shunt
Blunt Aortic Injury: Operative Techniques

• Endovascular procedure:
 – Anatomical
 • Aortic arch anatomy
 • Pre-procedural sizing
 • Neck
 – Material
 • Stent-graft technology / Diameter
Blunt Aortic Injury: Endoprosthesis type

Cook Gore Medtronic
WHO ?
A new classification scheme for treating blunt aortic injury

Benjamin W. Starnes, MD, FACS,a Rachel S. Lundgren, MD,a Martin Gunn, MBChB,ab
Samantha Quade, MD,a Thomas S. Hatsukami, MD,a Nam T. Tran, MD,a Nahush Mokadam, MD,a and
Gabriel Aldca, MD,a Seattle, Wash
JOURNAL OF VASCULAR SURGERY
January 2012

<table>
<thead>
<tr>
<th>Absent External Contour Abnormality</th>
<th>Present External Contour Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of Aortic Injury</td>
<td>Example</td>
</tr>
<tr>
<td>Intimal Tear</td>
<td>No aortic external contour abnormality: tear and/or associated thrombus is <10mm</td>
</tr>
<tr>
<td>Large Intimal Flap</td>
<td>No aortic external contour abnormality: tear and/or associated thrombus is >10mm</td>
</tr>
</tbody>
</table>
Aortic thoracic transection: classification

Starnes B. W. et al. JVS 2010

Proportion
- Rupture: 6%
- Intimal Tear: 16%
- Large intimal flap: 6%
- Pseudoaneurysm: 72%

Related death
- Rupture: 22%
- Intimal Tear: 8%
- Large intimal flap: 6%
- Pseudoaneurysm: 64%

N = 140 patients
N = 35 patients
Management of aortic transection

- Intimal flap: Follow-up (1 month)
- Large intimal tear: Follow-up (1 week)
- Pseudoaneursym: Delayed repair
- Rupture: Early repair

IF:
- Hypotension
- Traumatic brain injury
- Aortic arch hematoma > 15 mm
- Extension

- Associated lesions control
- Blood pressure control

Starnes B. W. et al. JVS 2010
HOW ?
Management principles

• Patient triage +++
• Management of aortic transection
 – Classification: grade / location
 – Pressure control (fluid restriction, beta blockers)
 – +/- Specific operative repair
• Treatment of other life-threatening injuries
Aortic thoracic transection: management associated injuries

Immediate endovascular repair injuries of the thoracic aorta

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of patients (Delay of repair)</th>
<th>Stent graft-related mortality (%)</th>
<th>Comorbid mortality (%)</th>
<th>Injury severity score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melnitchouk et al<sup>35</sup></td>
<td>15 (<14 d)</td>
<td>0</td>
<td>2 (13.4%)</td>
<td>ND</td>
</tr>
<tr>
<td>Amabile et al<sup>36</sup></td>
<td>9 (<14 d)</td>
<td>0</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>Dunham et al<sup>37</sup></td>
<td>7 (<24 h)</td>
<td>0</td>
<td>1 (6.3%)</td>
<td>36.9 ± 12.0</td>
</tr>
<tr>
<td>Lachat et al<sup>15</sup></td>
<td>16 (<14 d)</td>
<td>1 (10%)</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>Bent et al<sup>33</sup></td>
<td>9 (<24 h)</td>
<td>0</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>Buz et al<sup>39</sup></td>
<td>10 (<14 d)</td>
<td>0</td>
<td>1 (2.9%)</td>
<td>41 (range 13-66)</td>
</tr>
<tr>
<td>Marceix et al<sup>19</sup></td>
<td>9 (<24 h)</td>
<td>0</td>
<td>0</td>
<td>40.2 ± 10.7</td>
</tr>
<tr>
<td>Hoornweg et al<sup>20</sup></td>
<td>12 (<14 d)</td>
<td>0</td>
<td>4 (14.3%)</td>
<td>37.1 ± 7.8</td>
</tr>
<tr>
<td>Canaud et al<sup>38</sup></td>
<td>21 (<24 h)</td>
<td>0</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>This series</td>
<td>28 (<12 h)</td>
<td>0</td>
<td>5 (17.9%)</td>
<td>49.3 ± 13.2</td>
</tr>
</tbody>
</table>
Aortic thoracic transection: management

• Specific operative repair
 • Open surgery (OS)
 • Endovascular repair (TEVAR)

• TEVAR >>> OS
 – Mortality
 – Paraplegia
 – Blood loss
 – Intensive care unit

• OS >>> TEVAR
 – Repeated controls
 – Follow-up unclear

Fox, N et al. J. Trauma Care Surg 2014
Endograft follow-up
High motion (red)

Low motion (blue)

Learning deformation and structure simultaneously: in situ endograft deformation analysis. Langs et al. Med Image Anal. 2011
WHEN ?
Blunt Traumatic Thoracic Aortic Injuries: Early or Delayed Repair—Results of an American Association for the Surgery of Trauma Prospective Study

Table 5 Overall Outcomes According to Time of Aortic Repair

<table>
<thead>
<tr>
<th></th>
<th>All Patients (n = 178), % (n)</th>
<th>Early Repair (n = 109), % (n)</th>
<th>Delayed Repair (n = 69), % (n)</th>
<th>Odds Ratio (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deaths</td>
<td>12.4 (22)</td>
<td>16.5 (18)</td>
<td>5.8 (4)</td>
<td>3.21 (1.04–9.94)</td>
<td>0.034</td>
</tr>
<tr>
<td>Any systemic complications</td>
<td>43.8 (78)</td>
<td>41.3 (45)</td>
<td>47.8 (33)</td>
<td>1.30 (0.71–2.39)</td>
<td>0.391</td>
</tr>
<tr>
<td>Complications</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Procedure-related</td>
<td>1.7 (3)</td>
<td>1.8 (2)</td>
<td>1.4 (1)</td>
<td>1.27 (0.11–14.29)</td>
<td>1.000</td>
</tr>
<tr>
<td>paraplegia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonia</td>
<td>32.0 (57)</td>
<td>32.1 (35)</td>
<td>31.9 (22)</td>
<td>1.01 (0.53–1.93)</td>
<td>0.975</td>
</tr>
<tr>
<td>ARDS</td>
<td>13.5 (24)</td>
<td>11.9 (13)</td>
<td>15.9 (11)</td>
<td>0.71 (0.30–1.70)</td>
<td>0.445</td>
</tr>
<tr>
<td>Septicemia</td>
<td>14.0 (25)</td>
<td>13.8 (15)</td>
<td>14.5 (10)</td>
<td>0.94 (0.40–2.23)</td>
<td>0.891</td>
</tr>
<tr>
<td>UTI</td>
<td>16.9 (30)</td>
<td>14.7 (16)</td>
<td>20.3 (14)</td>
<td>0.68 (0.31–1.49)</td>
<td>0.330</td>
</tr>
<tr>
<td>DVT</td>
<td>2.2 (4)</td>
<td>1.8 (2)</td>
<td>2.9 (2)</td>
<td>0.63 (0.09–4.55)</td>
<td>0.642</td>
</tr>
<tr>
<td>Renal failure</td>
<td>9.0 (16)</td>
<td>10.1 (11)</td>
<td>7.2 (5)</td>
<td>1.44 (0.48–4.33)</td>
<td>0.518</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean ± SD (median)</th>
<th>Mean ± SD (median)</th>
<th>Mean ± SD (median)</th>
<th>Mean Difference (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ventilation days</td>
<td>9.2 ± 11.3 (5)</td>
<td>8.7 ± 10.4 (5)</td>
<td>10.0 ± 12.6 (7)</td>
<td>−1.21 (−4.69 to 2.27)</td>
<td>0.293</td>
</tr>
<tr>
<td>ICU days</td>
<td>13.3 ± 12.1 (9)</td>
<td>12.3 ± 11.8 (7)</td>
<td>14.9 ± 12.5 (12)</td>
<td>−2.58 (−6.28 to 1.11)</td>
<td>0.016</td>
</tr>
<tr>
<td>Hospital days</td>
<td>23.4 ± 33.2 (19)</td>
<td>19.9 ± 16.6 (15)</td>
<td>28.8 ± 48.4 (22)</td>
<td>−8.91 (−19.07 to 1.26)</td>
<td>0.007</td>
</tr>
<tr>
<td>Blood transfusion</td>
<td>10.8 ± 17.2 (6)</td>
<td>9.8 ± 15.8 (6)</td>
<td>12.4 ± 19.6 (6)</td>
<td>−2.58 (−8.04 to 2.89)</td>
<td>0.736</td>
</tr>
</tbody>
</table>
CASES
Case 1:
Intimal tear

Fig 4. A, Intimal tear is shown at the initial presentation on May 7, 2006. B, The tear was stable after 4 days (May 11). C, The tear was completely healed on follow-up imaging at 38 days (June 14).
Case 2: Acute aortic thoracic transection

A 21 years-old patient with spleen and renal contusions
Case 3:
Acute aortic thoracic transection and dissection of the RCA
Case 3:
Acute aortic thoracic transection and dissection of the RCA
Case 3:
Acute aortic thoracic transection and dissection of the RCA
Case 4:
Acute aortic thoracic transection associated to post traumatic subarachnoid hemorrhage
Case 4:
Acute aortic thoracic transection associated to post traumatic subarachnoid hemorrhage

Cook, diam= 26mm, lengh= 15 cm + pelvic embolization
Case 4:
Acute aortic thoracic transection associated to post traumatic subarachnoid hemorrhage.

Pelvic embolization
Case 5: Chronic thoracic transection

A 42 years-old patient
MH: Spleen trauma at the age of 12
Case 6:
Chronic aortic transection

A 69 years-old patient - Endotension
Conclusion

Angiography

CT scan

OS

TEVAR
Conclusion

- Inimal tear
 - Follow-up (1 month)
- Large intimal flap
 - Follow-up (1 week)
- Pseudoaneursym
 - Delayed repair
- Rupture
 - Early repair

IF

- Hypotension
- Aortic arch hematoma > 15 mm
- Traumatic brain injury
- Extension

- Associated lesions control
- Blood pressure control

Starnes B. W. et al. JVS 2010